
Evrostos: The rLTL Verifier∗

Tzanis Anevlavis
University of California, Los Angeles

janis10@ucla.edu

Daniel Neider
Max Planck Institute for Software Systems

neider@mpi-sws.org

Matthew Phillipe
Universitè catholique de Louvain
matthew.philippe@uclouvain.be

Paulo Tabuada
University of California, Los Angeles

tabuada@ucla.edu

ABSTRACT
Robust Linear Temporal Logic (rLTL) was crafted to incorporate
the notion of robustness into Linear-time Temporal Logic (LTL)
specifications. Technically, robustness was formalized in the logic
rLTL via 5 different truth values and it led to an increase in the time
complexity of the associated model checking problem. In general,
model checking an rLTL formula relies on constructing a general-
ized Büchi automaton of size 5 |φ | where |φ | denotes the length of an
rLTL formula φ. It was recently shown that the size of this automa-
ton can be reduced to 3 |φ | (and even smaller) when the formulas
to be model checked come from a fragment of rLTL. In this paper,
we introduce Evrostos, the first tool for model checking formulas
in this fragment. We also present several empirical studies, based
on models and LTL formulas reported in the literature, confirming
that rLTL model checking for the aforementioned fragment incurs
in a time overhead that makes the verification of rLTL practical.

CCS CONCEPTS
• Theory of computation → Logic and verification; Verifica-
tion by model checking; Modal and temporal logics;

KEYWORDS
Robustness; Formal methods; Temporal logic; Model Checking.
ACM Reference Format:
Tzanis Anevlavis, Daniel Neider, Matthew Phillipe, and Paulo Tabuada. 2019.
Evrostos: The rLTL Verifier. In 22nd ACM International Conference on Hybrid
Systems: Computation and Control (HSCC ’19), April 16–18, 2019, Montreal,
QC, Canada. ACM, New York, NY, USA, 6 pages. https://doi.org/10.1145/
3302504.3311812

1 INTRODUCTION
One of the most important problems in formal methods is model
checking. Intuitively, it asks whether the model of a given system
exhibits a specified behavior. The success of model checking lies
∗This workwas partially supported by the NSF grant 1645824 and by the Army Research
Laboratory under Cooperative Agreement W911NF-17-2-0196.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
HSCC ’19, April 16–18, 2019, Montreal, QC, Canada
© 2019 Copyright held by the owner/author(s). Publication rights licensed to the
Association for Computing Machinery.
ACM ISBN 978-1-4503-6282-5/19/04. . . $15.00
https://doi.org/10.1145/3302504.3311812

in using finite structures to describe infinite behaviors, and it is
known to be decidable for many temporal logics [5, 19]. The model
of a system is given by a finite state structure, and the properties
to be verified are formally given as a temporal logic specification.

Robustness (Greek: ευρωστία; evrostía) is a property widely
recognized in the control community as essential in any feedback
control loop. However, as we move from control problems that can
be described by differential equations to control problems where
software plays a more dominant role, such as in Cyber-Physical
Systems (CPS), identifying the “correct” notion of robustness has
remained a challenge [3, 6, 18, 21, 23]. An approach is given in
[12], [13, Chapter 7], by using models that combine continuous and
discrete behavior. Another direction is proposed in [7, 9, 10, 15] by
introducing a logic enabling reasoning over real-valued signals. In
that logic, robustness is derived from the real-valued nature of the
signals, whereas in this paper, we reason over Boolean signals and
robustness is derived from the temporal evolution of these signals.

Specifications for cyber components are typically written as:

φ ⇒ ψ ,

where φ is an assumption about the environment andψ is a system
guarantee. The semantics of classical propositional logic renders
this formula syntactically equivalent to:

¬φ ∨ψ .
If the assumption φ is violated, nothing can be said about the guar-
anteeψ . Not even if “φ is close to being satisfied”.

An alternative is proposed in [22], where the idea that “small”
violations of the assumption lead to “small” violations of the guar-
antee inspired a new logic termed robust Linear-time Temporal Logic
(rLTL). To formalize this idea, rLTL adopts a 5-valued semantics:
the truth value of an rLTL formula is interpreted as correspond-
ing to true or to different shades of false. Each one of the truth
values is written as a sequence of four bits adhering to the fol-
lowing order, 0000 ≺ 0001 ≺ 0011 ≺ 0111 ≺ 1111, with truth
value 1111 corresponding to true, and the rest to different shades
of false. Robustness now enters the picture via the rLTL semantics
for implication. To illustrate the underlying idea, consider the rLTL
formula1 ⊡ p ⇛⊡ q, which has truth value 1111 (corresponding to
true) when □ p implies □ q, and weakening the assumption □ p
to ◇□ p implies the guarantee ◇□ q, and weakening ◇□ p to
□◇ p implies □◇ q, and weakening □◇ p to ◇ p implies ◇ q.
In contrast, the corresponding LTL formula □ p ⇒□ q, would be

1An rLTL formula is obtained from an LTL formula by superimposing dots or dashes
to the LTL operators.

218

https://www.acm.org/publications/policies/artifact-review-badging/#replicated

HSCC ’19, April 16–18, 2019, Montreal, QC, Canada Anevlavis et al.

vacuously true if the assumption□ p is weakened, giving no insight
to what happens to the guarantee □ q.

Increasing the number of truth values increases the complex-
ity of verifying rLTL specifications. More precisely, verifying an
LTL formula φ requires the construction of a Generalized Büchi
Automaton (GBA) with O (

2 |φ |) states, where |φ | is the number of
subformulas in φ. However, an extension of this technique to veri-
fying rLTL formulas, see [22, Theorem 4.9], relies on constructing
a GBA with O (

5 |φ |) states. As the complexity of model checking
is proportional to the size of this automaton, this results in a large
overhead in time complexity.

Recently, refined upper bounds for the rLTL verification problem
were proved in [1]. The key idea is to think of the truth value of rLTL
formulas as a sequence of 4 bits, and each bit as corresponding to
the truth value of an LTL formula. As shown in [22], the difficulty
of dealing with the 5-valued semantics of rLTL formulas lies in
the fact that the four bits of a truth value are coupled in general,
leading to exponentially longer formulas. Fortunately, it is possible
to restrict rLTL to a fragment consisting of formulas that occur
frequently in real-world applications and for which the complexity
is reduced. In particular, it is shown in [1] that for the rLTL fragment
of formulas of the formψ1 ⇛ ψ2, whereψ1 andψ2 are rLTL formulas
not containing robust implications or robust releases, the rLTL
verification problem is solved by performing at most 4 LTL model
checking steps, each using a GBA of size at most

O
(
2 |φ |−k(φ)3k (φ)

)
,

where |φ | is the number of subformulas in φ, and k(φ) is the number
of robust always (⊡) operators in φ. In the worst case, k(φ) = |φ |
and the time complexity is proportional to 3 |φ | , a considerable
improvement over the bound 5 |φ | proved in [22] and closer to the
tight LTL bound 2 |φ | .

More than 60% of the rLTL versions of the LTL formulas avail-
able in the Büchi store, an open repository of Büchi automata [24],
were in this fragment. Moreover, this rLTL fragment includes the
GR(1) fragment for which efficient verification and synthesis algo-
rithms are known. Hence, it is a practically significant and powerful
fragment. Therefore, the ability to solve the rLTL model checking
problem on the aforementioned fragment will significantly con-
tribute to improve the robustness of system designs.

Towards this end, we present the first tool to perform rLTLmodel
checking, Evrostos: The rLTL Verifier2. Evrostos is open-source and
publicly available. It consists of two different components: (i) an
rLTL-to-LTL translator for rLTL formulas in the aforementioned
fragment, and (ii) the popular symbolic model checker NuSMV [4].

Using Evrostos we conducted several empirical studies with
system models and LTL formulas reported in the literature. The
results of these studies support the theoretical findings in [1] that
the time overhead of rLTL for the fragment discussed is small and
close to the one of LTL in most of the cases.

The structure of the paper is as follows. In Section 2 we present
a motivating example of a real-life aircraft control model exposing
the weakness of the logical implication in LTL. Section 3, briefly
presents the syntax and semantics of rLTL, as well as the rLTL
2Evrostos is a tool that Efficiently Verifies RObuSTness Of Specifications. It is available
online at https://github.com/janis10/evrostos.

model checking problem. We also present the rLTL fragment of
interest and provide theoretical results for the algorithm solving the
verification problem. Section 4 introduces in detail Evrostos: The
rLTL Verifier, which implements the algorithm of [1]. Finally, Sec-
tion 5 presents case studies showing how rLTL verification for that
fragment compares to LTL verification in terms of execution time.
The empirical results also show how rLTL verification provides
much more detailed information than LTL verification.

2 COMPARING rLTL WITH LTL ON AN
EXAMPLE

The aim of this paper is not only to provide the first tool for rLTL
verification, but also to motivate the widespread use of rLTL to
specify and verify robustness properties. With this in mind, we
present a case study exposing one of the weaknesses of logical
implication in LTL; if the assumption is false, the implication is
vacuously true and nothing can be deduced about the guarantee. In
rLTL this is not the case; when the assumption is not true, depending
on the truth value of the implication, we can conclude important
information about the guarantee.

We use the model of an Automated Air Traffic Control System
as developed in [25], where a model for the Automated Airspace
Concept (AAC)3 [8] is described. AAC ensures the safe separation
of commercial aircraft within a given airspace sector so that safe
distance between the aircraft is always guaranteed to prevent po-
tential aircraft collisions. AAC detects potential conflicts between
aircrafts and resolves them by generating resolution maneuvers and
sending them to human pilots. Different controllers are responsible
for handling short-term and near-term conflicts, as well as colli-
sion avoidance. Initially, the AutoResolver, addresses short-term
conflicts (20 minutes to 3 minutes in the future). Then, the Tactical
Separation Assured Flight Environment (TSAFE), addresses near-
term conflicts (less than 3 minutes in the future). Finally, the Traffic
Alert and Collision Avoidance System (TCAS), addresses possible
collisions less than 30 seconds away. TSAFE overrides the AutoRe-
solver and TCAS overrides both. After the conflict is resolved by
any of the controllers, they relinquish control of the aircraft.

The model built in [25] consists of three aircrafts. When an
alert involving two aircrafts is issued, one of the controllers will
resolve it as in the scheme above. These alerts are represented by
the variable “alerti j ” for aircrafts i and j, taking values in the set
{non,AT ,BT }, where non means “no potential collision”,AT means
“potential collision, time is Above Threshold for TSAFE”, and BT
means “potential collision, time is Below Threshold for TSAFE”.

We consider a simplified version of this setup that could take
place in a crowded airport airspace, or in a drone fleet coordination
scenario where alerts are issued infinitely often given the high
density of aircrafts. In this version we have only two controllers, the
AutoResolver and the TSAFE controller, and 3 aircrafts. We would
like to verify the following specification: “If after some point in time
there are no collision alerts for aircraft 1, then the TSAFE controller
will relinquish control of the aircraft after resolving a collision”.

3AAC is a high-level generic framework proposed as a candidate for the Next Genera-
tion Air Traffic Control System, which was under development at NASA. Thus, we are
considering a real-time, practical model to show the significance of our findings.

219

Evrostos: The rLTL Verifier HSCC ’19, April 16–18, 2019, Montreal, QC, Canada

This is written in LTL as

(◇□ (alert12 = non ∧ alert13 = non))
⇒ (□ (◇ ¬tsafeControl1)), (1)

where the boolean variable “tsafeControl1” is true when TSAFE is
controlling aircraft 1, and false otherwise.

The specification in rLTL is written as

(⟐⊡ (alert12 = non ∧ alert13 = non))
⇛ (⊡ (⟐ ¬tsafeControl1)). (2)

In practice, a more detailed specification would be used, but formula
(2) suffices for our purposes.

Consider the following scenario: a bug in TSAFE of aircraft 1
makes it always be in control of the aircraft once it’s triggered,
resulting in the consequent of (1) to be false. Verifying LTL specifi-
cation (1) on NuSMV for the simplified setup returns:

Specification F G(alert12 = non & alert13 = non)
− > G (F ! tsafeControl1) is TRUE.

Even if the controller is incorrect, the specification is true as its
assumption is never satisfied (alerts are issued infinitely often).
This misleads the designer in believing the controller behaves as
expected.

Verifying rLTL specification (2) on Evrostos returns:

Model Checking of the original rLTL formula returns

truth value 0001.

This truth value (see Section 3 for a definition of the rLTL semantics)
tells us that even if there are no alerts infinitely often, the controller
of aircraft 1 will not relinquish control infinitely often but finitely
often. In other words, there will be infinitely many time instances
when there is no alert and yet control is not relinquished. Already
this illustrative example shows that rLTL model checking provides
much more insight than classical LTL model checking.

3 rLTL MODEL CHECKING
As discussed in the introduction, the main goal of rLTL is to embed
a notion of robustness into LTL. With this in mind, the syntax of
rLTL closely resembles that of LTL using robust versions of LTL
operators.

Definition 1 (rLTL syntax). Let P be a nonempty, finite set
of atomic propositions. The set of all rLTL formulas on P, written
rLTL(P), is the smallest set satisfying

• P ⊂ rLTL(P) and
• if φ and ψ are elements of rLTL(P), then ¬φ, φ ∨ ψ , φ ∧ ψ ,
φ ⇛ ψ , ⊙ φ, ⊡ φ, ⟐ φ, φ ℛ· ψ and φ 𝒰· ψ are elements of
rLTL(P) as well.

The length of a formula φ ∈ rLTL(P) is denoted by |φ | and is the
number of subformulas it contains.

Given a word σ ∈
(
2P

)ω
and a formula φ ∈ rLTL(P), the

semantics of rLTL provides the degree to which σ satisfies the LTL
counterpart4 of φ. This is captured by using a 5-valued semantics;
4The LTL counterpart of any rLTL formula is obtained by removing all the dots or
dashes superimposed on the operators.

Table 1: The Full Semantics of rLTL and the ltl operator.
Operator Symbol Semantics, for p ∈ P, φ,ψ ∈ rLTL(P).
Atomic Proposition ∀1 ≤ i ≤ 4 : ltl(i,p) = p.
Negation ¬ ∀1 ≤ i ≤ 4 : ltl(i,¬φ) = ¬ltl(1,φ).
Disjunction ∨ ∀1 ≤ i ≤ 4 : ltl(i,φ ∨ψ) = ltl(i,φ) ∨ ltl(i,ψ).
Conjunction ∧ ∀1 ≤ i ≤ 4 : ltl(i,φ ∧ψ) = ltl(i,φ) ∧ ltl(i,ψ).

Robust Implication ⇛
∀1 ≤ i ≤ 3 : ltl(i,φ ⇛ ψ) = (ltl(i,φ) ⇒

ltl(i,ψ)) ∧ ltl(i + 1,φ ⇛ ψ),
ltl(4,φ ⇛ ψ) = (ltl(4,φ) ⇒ ltl(4,ψ)).

Next ⊙ ∀1 ≤ i ≤ 4 : ltl(i,⊙ φ) =○ ltl(i,φ).

Robust Always ⊡

ltl(1,⊡ φ) =□ ltl(1,φ),
ltl(2,⊡ φ) =◇□ ltl(2,φ),
ltl(3,⊡ φ) =□◇ ltl(3,φ),
ltl(4,⊡ φ) =◇ ltl(4,φ).

Robust Eventually ⟐ ∀1 ≤ i ≤ 4 : ltl(i,⟐ φ) =◇ ltl(i,φ).
Robust Until 𝒰· ∀1 ≤ i ≤ 4 : ltl(i,φ 𝒰· ψ) = ltl(i,φ)𝒰 ltl(i,ψ).

Robust Release ℛ·
ltl(1,φ ℛ· ψ) = ltl(1,φ) ℛ ltl(1,ψ),
ltl(2,φ ℛ· ψ) =◇□ ltl(2,ψ)∨ ◇ ltl(2,φ),
ltl(3,φ ℛ· ψ) =□◇ ltl(3,ψ)∨ ◇ ltl(3,φ),
ltl(4,φ ℛ· ψ) =◇ ltl(4,ψ)∨ ◇ ltl(4,φ).

one truth value corresponds to true and the others to different
shades of false.

Formally, the truth value of an rLTL formula is a 4-tuple belong-
ing to the set B5, where B5[n] ∈ B5, for 0 ≤ n ≤ 4, is the truth
value with n bits set to 1:

B5 = {0000, 0001, 0011, 0111, 1111}
= {B5[0],B5[1],B5[2],B5[3],B5[4]}.

The truth values are ordered as follows:

0000 ≺ 0001 ≺ 0011 ≺ 0111 ≺ 1111. (3)

Hence, a truth value inB5 can be viewed as a sequence of 4 bits, with
1111 corresponding to true and the remaining ones corresponding
to different shades of false. For example consider the rLTL formula
⊡ p. Truth value B5[4] = 1111 corresponds to the LTL formula □ p
being satisfied, B5[3] = 0111 corresponds to ◇□ p being satisfied,
B5[2] = 0011 corresponds to □◇ p being satisfied, B5[1] = 0001
corresponds to ◇ p being satisfied, and B5[0] = 0000 corresponds
to □ ¬p.

In order to introduce the semantics of rLTL, we construct four
LTL formulas for each rLTL formula φ and interpret the correspond-
ing 4 tuple of truth values as the truth value of φ. The translation of
one rLTL formula to four LTL formulas is done via the ltl operator
defined below.

Definition 2 (rLTL semantics). For a set of atomic propositions
P, we define the operator

ltl : {1, . . . , 4} × rLTL(P) → LTL(P) (4)

as in Table 1. The rLTL semantics is defined as a function

V :
(
2P

)ω × rLTL(P) → B5,
where for any σ ∈ (

2P
)ω
,φ ∈ rLTL(P) and 1 ≤ i ≤ 4, the ith bit

Vi (σ ,φ) of the valuation V (σ ,φ) is given by:

Vi (σ ,φ) =W (σ , ltl(i,φ)) ,
whereW (σ ,ψ) is the truth value of the LTL formulaψ evaluated on
the infinite word σ .

220

HSCC ’19, April 16–18, 2019, Montreal, QC, Canada Anevlavis et al.

The difficulty of dealing with the 5-valued semantics of rLTL
formulas lies in the fact that the four bits of a truth value are coupled
by robust implications and negations. Intuitively, negation changes
true to false and all shades of false to true. In particular, the value
of the each bit depends on the value of the leftmost bit. In a similar
manner, each bit of the robust implication, needs the value of the
next bit to the right.

To address this the authors in [1] identified a fragment of rLTL
for which bitwise computations are possible. We present this in the
next section.

3.1 The rLTL Model Checking Problem
The model checking problem for LTL asks whether or not a model
(set of words) satisfies an LTL specification. In rLTL, the model
checking problem is intuitively understood as the question "to
what degree does a model satisfy a specification"?

Problem 1 (The Model Checking Problem for rLTL). Given a
set of atomic propositions P, a set set of wordsL ⊆

(
2P

)ω
recognized

by a Generalized Büchi Automaton (GBA) A, and φ ∈ rLTL(P),
compute

b(L,φ) = min
σ ∈L

V (σ ,φ). (5)

Note that V (σ ,φ) ∈ B5, and the minimum follows the ordering
defined in Equation (3).

In [22, Theorem 4.9], the authors provide a technique for rLTL
model checking that follows the standard steps of LTL model check-
ing. Given an rLTL formula φ, a GBA with N rLTL

φ = O(5 |φ |) states,
and F rLTLφ = O(|φ |) accepting conditions is constructed, and inter-
sected with the GBA recognizing the language L. Following the
standard approach for automaton-based LTL model checking the
time complexity of rLTL model checking is proportional to

O(5 |φ |). (6)
In [1, Theorem 3.2], the authors introduced the rLTL fragment

{ψ ,ψ1 ⇛ ψ2 | ψ ,ψ1,ψ2 ∈ �rLTL(P)},
where �rLTL(P) ⊂ rLTL(P) is the set of all rLTL formulas that do
not contain the operators⇛ or ℛ· . For this fragment they refined
complexity bounds for the corresponding rLTL model checking
problem and proved that it can be solved by performing at most
four LTL model checking steps as shown in Algorithm ??. We state
their main result here in the following theorem.

Theorem 3.1. Consider a set of atomic propositions P, a set L ⊆(
2P

)ω
recognized by a GBA A with N states. Let φ be any formula

in the rLTL fragment

{ψ ,ψ1 ⇛ ψ2 | ψ ,ψ1,ψ2 ∈ �rLTL(P)}. (7)
Algorithm ?? computes b(L,φ) = B5[ℓ], 0 ≤ ℓ ≤ 4 by performing
min(ℓ + 1, 4) LTL model-checking steps, each using an automaton of
size at most

O
(
2 |φ |−k(φ)3k (φ)

)
, (8)

where k(φ) is the number of robust always (⊡) operators in φ.
Our tool implements Algorithm ??. We note that from now on,

we will only be dealing with rLTL formulas that belong to the
fragment described by (7).

Data: A language L generated by a GBA A, a formula
φ ∈ rLTL(P).

Result: Computes b(L,φ) (see (5)).
for j = 0, . . . , 3 do

w := infσ ∈LW (σ , ltl(4 − j,φ)).
if w = 0 then

return B5[j]
end

end
return B5[4]

Algorithm 1: rLTL model checking algorithm.

4 VERIFYING ROBUST LTL FORMULAS:
HERE COMES EVROSTOS!

Evrostos is an open-source tool, consisting of two different compo-
nents. The first component is an rLTL-to-LTL translator for rLTL
formulas in the fragment (7). An rLTL formula is translated into four
LTL formulas, one for each bit of the rLTL formula. This bit-wise
translation is done recursively as dictated by Table 1. The second
component implements the bit-wise model-checking algorithm de-
veloped in [1], using NuMSV [4] to model-check each of the four
LTL formulas. The tool starts at the rightmost bit, and terminates
if for any bit the result of the LTL model checking is false or if all
four bits are checked. In Evrostos we use the notation for the rLTL
and the LTL operators as in Table 2.

4.1 Translating rLTL to LTL
The translation of an rLTL formula to four LTL formulas essentially
implements the function ltl from Definition 2. This operator takes a
pair of an rLTL formula and a bit i, 1 ≤ i ≤ 4, as input, and returns
the corresponding LTL formula for that bit. For example, the rLTL
formula

p ⇛⊡ (r𝒰· (¬p)),
is transformed into the following 4 formulas:

bit1 : (p ⇒□ (r𝒰 (¬p))) ∧ (p ⇒◇□ (r𝒰 (¬p)))
∧(p ⇒□◇ (r𝒰 (¬p))) ∧ (p ⇒◇ (r𝒰 (¬p))),

bit2 : (p ⇒◇□ (r𝒰 (¬p))) ∧ (p ⇒□◇ (r𝒰 (¬p)))
∧(p ⇒◇ (r𝒰 (¬p))),

bit3 : (p ⇒□◇ (r𝒰 (¬p))) ∧ (p ⇒◇ (r𝒰 (¬p))),

Table 2: Syntax of rLTL and LTL in Evrostos.
rLTL LTL

Operator Symbol Evrostos
Symbol Operator Symbol Evrostos

Symbol
Negation ¬ ! Negation ¬ !

Disjunction ∨ | Disjunction ∨ |
Conjunction ∧ & Conjunction ∧ &

Robust Implication ⇛ => Implication ⇒ − >
Next ⊙ rX Next ○ X

Robust Always ⊡ rG Always □ G

Robust Eventually ⟐ rF Eventually ◇ F

Robust Until 𝒰· rU Until 𝒰 U

Robust Release ℛ· rR Release ℛ R

221

Evrostos: The rLTL Verifier HSCC ’19, April 16–18, 2019, Montreal, QC, Canada

bit4 : (p ⇒◇ (r𝒰 (¬p))),
as the rLTL semantics of Table 1 dictate.

4.2 Model checking with NuSMV
The second component of our tool is built on NuSMV. We opted for
NuSMV as our symbolic model verifier because it is open-source,
well-documented, and widely used in industry [11, 14, 17, 20, 25].
We skip the operating details of NuSMV as our tool handles the
interactions between different components internally, but a user
manual can be found online [4].

For a given model, we use NuSMV to check if the LTL formula
corresponding to each bit of the rLTL formula is true or false. In
implementing Algorithm ??, our tool stops the process when the
truth value returned by NuSMV is false or if all bits are checked.
Consider again the formula example above. NuSMV checks the bit4
formula. Assume this specification is true for a given model, then
the bit3 formula is checked, and if for example it is false the process
stops. Then the rLTL verification ends with the truth value 0001.
The benefit of this approach against a naive implementation of an
rLTL-to-LTL translation and model checking is that it stops early
(if possible), thus avoiding unnecessary computations.

4.3 Interface and standard I/O
Evrostos is a user-friendly and easy to run tool. It runs from the ter-
minal just by typing the following command: "./evrostos -options".
A .txt file with the rLTL formulas can be an input to the tool, or the
user can type the rLTL formula directly on the terminal. If multiple
specifications should be checked for the same model the .txt file
option is used with one rLTL formula per line.

Upon completion of the rLTL model checking, Evrostos compiles
a report with the following contents:

• Name of model file used;
• Original rLTL formulas;
• Translated LTL formulas;
• Result of the rLTL model checking;
• Execution time of the rLTL model checking.

Now that we have introduced the main components of Evrostos,
we are ready to present our experimental evaluation and compari-
son to classical LTL model checking.

5 EXPERIMENTAL RESULTS
In this final section, we compare the rLTL fragment (7) with the cor-
responding LTL fragment in terms of time complexity as indicated
by the respective execution times for model checking, and show
that verifying rLTL formulas provides much more information than
verifying the corresponding LTL formulas.

5.1 rLTL time overhead and False against
Shades of False

We now compare the execution times of rLTL model checking using
Evrostos and classical LTL model checking using NuSMV. We aim
to show that rLTL is not muchmore expensive in terms of execution
time. The system models used are the automated air traffic control
system described in Section 2, an abstract version of the samemodel
[25], and a telephone system as described in [2, 16].

Table 3: Telephone System: Execution times of rLTL & LTL.
Formula rLTL

Truth Value
rLTL

Time (s)
LTL

Truth Value
LTL

Time (s)
Time Complexity

Blowup
⊡ (¬(tt1 ∧ d12) ∨ td2) 0001 319.10 FALSE 265.29 1.04

⊡ (¬(msд2)∨
((d21 ∧ tcs12) ∨ (d24 ∧ tcs42))) 0011 26.71 FALSE 11.54 1.11

⊡ (¬(ph1f orw0)∨ ⊡ (¬(rinд1 ∨ td1))) 0001 352.07 FALSE 278.05 1.04

⊡ (¬(tcs12 ∧ rinд1) ∨ rinдt3) 0001 157.95 FALSE 117.01 1.06

⊡ (¬(msд3)∨
((d31 ∧ tcs13) ∨ (d34 ∧ tcs43))) 0011 139.25 FALSE 55.91 1.12

⊡ (¬(try1)∨ ⊙ (rinдt1 ∨ busyt1)) 0011 541.17 FALSE 220.24 1.16

⊡ (¬(tt1 ∧ d13) ∨ td3) 1111 10.43 TRUE 3.01 1.26

⊡ (¬(tcs13)∨
⊡ (¬(d31 ∧ (rinдt3 ∨ tt3)))) 0001 94.46 FALSE 91.92 1.00

⊡ (¬(tcs42)∨
⊡ (¬(d24 ∧ (rinдt2 ∨ tt2)))) 0001 11.10 FALSE 7.53 1.05

For reference, all the simulations were conducted with a Mac-
Book Pro (Retina, Mid 2012), with 4 cores @ 2.3 GHz Intel Core i7
Processor, and 8 GB 1600 MHz DDR3.

Tables 3 and 4 show the specifications5 and the time taken to
model check them. At a first glance, rLTL verification takes more
time, something expected since the time for rLTL verification is
proportional to 3 |φ | for an rLTL formula φ. To meaningfully com-
pare the execution times we compute the time complexity blowup, ζ .
Let tr LT L be the time required to solve the rLTL verification prob-
lem and tLT L be the corresponding time for the LTL verification
problem. If tLT L = 2 |φ | for a formula φ, and knowing that tr LT L is
larger we write tr LT L = 2ζ |φ | and ask what is the exponent ζ that
describes the overhead. From the two expressions above we obtain:

ζ = 1 +
loд

(
tr LT L
tLT L

)
|φ | (9)

Since the time complexity of rLTL is proportional to 3 |φ | , we have
an upper bound ζ̄ = loд2(3) = 1.58. Looking now at Tables 3 and
4, we observe that Time Complexity Blowup, ζ , is well below this
upper bound and much closer to 1 in all the cases, meaning that
the time complexity of rLTL for the fragment we are considering is
close to that of LTL.

Finally, in Tables 3 and 4 (abstract model), the difference between
a formula not being true in LTL and in rLTL is illustrated. Almost
all these specifications share a common trait: a property should
hold at every time step of the execution, i.e., specifications of the
form ⊡ φ. In LTL, if it is violated even once, the truth value is false.
In rLTL on the other hand, as we can see it is rarely the case that it
is never satisfied. For example in Table 4 the specifications in lines
3 and 4 (abstract model) have truth values 0011 meaning that they
are both satisfied and violated infinitely often over the executions
of the system model. This can be interpreted intuitively as "how
frequently" a formula is satisfied over the set of all infinite words
of a system model. In particular, if LTL reports false, then there
are in fact various rLTL truth values, giving information about the
different reasons preventing different formulas from having true as
their truth value. For example, the truth value 0001 in the first line
in Table 3 states that a property is false but satisfied finitely many
times, and the truth value 0011 in the second line that it is also false
but satisfied infinitely many times. In other words, rLTL provides
more fine-grained information which is one of its advantages.

5In Tables 3 and 4 we present the rLTL versions of the specifications tested. The LTL
versions can be obtained simply by removing the dots and dashes from the operators.

222

HSCC ’19, April 16–18, 2019, Montreal, QC, Canada Anevlavis et al.

Table 4: Automated Air Traffic Control System: Execution times of rLTL & LTL.
AAC Original Model AAC Abstract Model

Formula rLTL
Truth Value

rLTL
Time (s)

LTL
Truth Value

LTL
Time (s)

Time Complexity
Blowup

rLTL
Truth Value

rLTL
Time (s)

LTL
Truth Value

LTL
Time (s)

Time Complexity
Blowup

⊡ (¬(ctr1 ∧ ta12non ∧ ta13non ∧ ta23non
∧(⊙ ¬ta12at) ∧ (⊙ ¬ta13at) ∧ (⊙ ¬ta23at)) ∨ (⊙ (⊙ ctr1))) 1111 12.82 TRUE 3.43 1.08 1111 1.03 TRUE 0.24 1.09

⊡ (¬(ta12bt ∧ ¬ta13at ∧ ¬ta23at
∧ctr0 ∧ tsscmd ∧ tswin) ∨ (⊙ (tscmd1 ∨ tscmd2))) 1111 1.81 TRUE 0.35 1.12 1111 0.51 TRUE 0.08 1.13

⊡ (¬(ta12at ∧ ¬ta13at ∧ ¬ta23at
∧ctr0 ∧ ¬ac1tscmd ∧ ¬ac2tscmd) ∨ (⟐ (tscmd1 ∨ tscmd2))) 1111 726.79 TRUE 291.00 1.06 0011 1.01 FALSE 0.31 1.08

⊡ (¬(ac1tscmddone ∧ ¬ac1tscmd ∧ tsctr1)∨ ⊙ (¬tsctr1)) 1111 13.11 TRUE 3.78 1.15 0011 0.51 FALSE 0.08 1.22

⊡ (¬(ac1tccmd ∧ ¬ac1tscmddone)∨
((¬ac1tscmddone)𝒰· ac1tccmddone)) 1111 1.55 TRUE 0.29 1.22 0000 0.26 FALSE 0.04 1.25

⊡ (¬(ac1tscmd ∧ ¬ac1ctrcmddone)∨
((¬ac1ctrcmddone)𝒰· ac1tscmddone)) 1111 144.52 TRUE 35.03 1.19 0001 0.33 FALSE 0.08 1.19

⊡ (¬(¬ta12non) ∨ (⟐ ta12non)) 1111 140.85 TRUE 25.87 1.35 0001 0.30 FALSE 0.08 1.27

(⊡⟐ (ta12non ∧ ta13non)) ⇛ (⊡ (⟐ (¬tsctr1))) 1111 94.68 TRUE 14.34 1.21 1111 0.59 TRUE 0.10 1.20

⊡ (¬(¬ctr1 ∧ ¬ac1ctrcmddone)∨
(((¬ac1ctrcmddone)𝒰· ctr1) ∨ (⟐ ac1tscmddone))) 0001 157.57 FALSE 80.31 1.06 0001 0.36 FALSE 0.09 1.13

⊡ (¬(tsctr1 ∧ ¬ac1ctrcmddone)∨
(((¬ac1ctrcmddone)𝒰· ctr1) ∨ (⟐ ac1tscmddone))) 0001 133.03 FALSE 81.52 1.05 0001 0.36 FALSE 0.09 1.14

⊡ (¬(ac1tscmd ∧ ¬ac2tscmd ∧ ¬ac2tscmddone)∨
((¬ac1tscmddone ∧ ¬ac2tscmddone)𝒰· ac1tscmddone)) 0011 154.24 FALSE 91.93 1.04 0001 0.70 FALSE 0.16 1.13

⊡ (¬(tscmd1 ∧ ctr1) ∨ (⊙ (¬ctr1))) 1111 4.83 TRUE 1.53 1.18 1111 0.52 TRUE 0.09 1.28

6 CONCLUSIONS
In this paper we presented Evrostos: The rLTL Verifier, an open-
source, publicly available tool, and the first to perform rLTL model
checking. It operates on an rLTL fragment for which the time
complexity of the verification problem approaches that of LTL. We
provided a pedagogical example of a controller specification being
vacuously true in LTL, but not in rLTL, proving that this particular
controller was not robust. Moreover, we showed that the execution
time for rLTL verification is within acceptable ranges compared
to the corresponding LTL verification execution time, and also the
truth values of rLTL make it more informative compared to LTL.
We believe this new tool will motivate the widespread use of rLTL
to specify and verify robustness properties.

REFERENCES
[1] T. Anevlavis, M. Philippe, D. Neider, and P. Tabuada. 2018. Verifying rLTL

formulas: now faster than ever before!. In 2018 IEEE Conference on Decision and
Control (CDC). 1556–1561. https://doi.org/10.1109/CDC.2018.8619014

[2] Shoham Ben-David, Baruch Sterin, Joanne M. Atlee, and Sandy Beidu. 2015.
Symbolic Model Checking of Product-line Requirements Using SAT-based Meth-
ods. In Proceedings of the 37th International Conference on Software Engineering -
Volume 1 (ICSE ’15). IEEE Press, Piscataway, NJ, USA, 189–199.

[3] Roderick Bloem, Krishnendu Chatterjee, Karin Greimel, Thomas A. Henzinger,
Georg Hofferek, Barbara Jobstmann, Bettina Könighofer, and Robert Könighofer.
2014. Synthesizing Robust Systems. Acta Inf. 51, 3-4 (June 2014), 193–220.

[4] Alessandro Cimatti, Edmund M. Clarke, Enrico Giunchiglia, Fausto Giunchiglia,
Marco Pistore, Marco Roveri, Roberto Sebastiani, and Armando Tacchella. 2002.
NuSMV 2: An OpenSource Tool for Symbolic Model Checking. In Proceedings
of the 14th International Conference on Computer Aided Verification (CAV ’02).
Springer-Verlag, London, UK, UK, 359–364.

[5] Edmund M Clarke, Orna Grumberg, and Doron Peled. 1999. Model checking. MIT
press.

[6] Eric Dallal, Daniel Neider, and Paulo Tabuada. 2016. Synthesis of safety controllers
robust to unmodeled intermittent disturbances. In Decision and Control (CDC),
2016 IEEE 55th Conference on. IEEE, 7425–7430.

[7] Alexandre Donzé and Oded Maler. 2010. Robust satisfaction of temporal logic
over real-valued signals. In International Conference on Formal Modeling and
Analysis of Timed Systems. Springer, 92–106.

[8] Heinz Erzberger and K Heere. 2010. Algorithm and operational concept for
resolving short-range conflicts. In Proceedings of The Institution of Mechanical
Engineers Part G-journal of Aerospace Engineering - PROC INST MECH ENG G-J A
E, Vol. 224. 225–243.

[9] Georgios E Fainekos and George J Pappas. 2006. Robustness of temporal logic
specifications. In Formal Approaches to Software Testing and Runtime Verification.

Springer, 178–192.
[10] Georgios E Fainekos and George J Pappas. 2009. Robustness of temporal logic

specifications for continuous-time signals. Theoretical Computer Science 410, 42
(2009), 4262–4291.

[11] Xiang Gan, Jori Dubrovin, and Keijo Heljanko. 2014. A symbolic model checking
approach to verifying satellite onboard software. Science of Computer Program-
ming 82 (2014), 44 – 55. Special Issue on Automated Verification of Critical
Systems (AVoCS’11).

[12] Rafal Goebel, Joao Hespanha, Andrew R Teel, Chaohong Cai, and Ricardo San-
felice. 2004. Hybrid systems: Generalized solutions and robust stability. IFAC
Proceedings Volumes 37, 13 (2004), 1–12.

[13] Rafal Goebel, Ricardo G Sanfelice, and Andrew R Teel. 2012. Hybrid Dynamical
Systems: modeling, stability, and robustness. Princeton University Press.

[14] J. Lahtinen, J. Valkonen, K. Björkman, J. Frits, I. Niemelä, and K. Heljanko. 2012.
Model checking of safety-critical software in the nuclear engineering domain.
Reliability Engineering & System Safety 105 (2012), 104 – 113. ESREL 2010.

[15] Rupak Majumdar, Elaine Render, and Paulo Tabuada. 2013. A theory of robust
omega-regular software synthesis. ACM Transactions on Embedded Computing
Systems (TECS) 13, 3 (2013), 48.

[16] Malte Plath and Mark Ryan. 2001. Feature integration using a feature construct.
Science of Computer Programming 41, 1 (2001), 53 – 84.

[17] Kristin Y. Rozier. 2011. Linear Temporal Logic Symbolic Model Checking. Com-
puter Science Review 5, 2 (2011), 163 – 203.

[18] Matthias Rungger and Paulo Tabuada. 2016. A notion of robustness for cyber-
physical systems. IEEE Trans. Automat. Control 61, 8 (2016), 2108–2123.

[19] Philippe Schnoebelen. 2002. The Complexity of Temporal Logic Model Checking.
Advances in modal logic 4, 393-436 (2002), 35.

[20] Alireza Souri, Nima Jafari Navimipour, and Amir Masoud Rahmani. 2018. Formal
verification approaches and standards in the cloud computing: A comprehensive
and systematic review. Computer Standards & Interfaces 58 (2018), 1 – 22.

[21] Paulo Tabuada, Sina Yamac Caliskan, Matthias Rungger, and Rupak Majumdar.
2014. Towards robustness for cyber-physical systems. IEEE Trans. Automat.
Control 59, 12 (2014), 3151–3163.

[22] Paulo Tabuada and Daniel Neider. 2015. Robust Linear Temporal Logic. arXiv
preprint arXiv:1510.08970 (2015).

[23] Danielle C Tarraf, Alexandre Megretski, and Munther A Dahleh. 2008. A frame-
work for robust stability of systems over finite alphabets. IEEE Trans. Automat.
Control 53, 5 (2008), 1133–1146.

[24] Yih-Kuen Tsay, Ming-Hsien Tsai, Jinn-Shu Chang, and Yi-Wen Chang. 2011.
Büchi store: an open repository of büchi automata. In International Conference
on Tools and Algorithms for the Construction and Analysis of Systems. Springer,
262–266.

[25] Yang Zhao and Kristin Yvonne Rozier. 2014. Formal Specification and Verification
of a Coordination Protocol for an Automated Air Traffic Control System. Sci.
Comput. Program. 96, P3 (Dec. 2014), 337–353.

223

